158 research outputs found

    Endocannabinoids in TNF-α and Ethanol Actions

    Get PDF
    During marijuana and alcohol consumption as well as during inflammation the reproductive axis is inhibited, mainly through the inhibition of luteinizing hormone-releasing hormone release. In male rats, this inhibitory effect is mediated, at least in part, by the activation of hypothalamic cannabinoid type 1 receptors (CB1). During inflammation, this activation of the endocannabinoid system seems to be mediated by an increase in TNF-α production followed by anandamide augmentations, similarly the effect of intragastric administration of ethanol (3 g/kg) seems to be due to an increase in anandamide. On the other hand, a number of different actions mediated by the endocannabinoid system in various organs and tissues have been described. Both cannabinoid receptors, CB1 and CB2, are localized in the submandibular gland where they mediate the inhibitory effect of intrasubmandibular injections of the endocannabinoid anandamide (6 × 10–5M) on salivary secretion. Lipopolysaccharide (5 mg/kg/3 h) injected intraperitoneally and ethanol (3 g/kg/1 h) injected intragastrically inhibited the salivary secretion induced by the sialogogue metacholine; this inhibitory effect was blocked by CB1 and/or CB2 receptor antagonists. Similar to the hypothalamus, these effects seem to be mediated by increased anandamide. In summary, similar mechanisms mediate the inhibitory actions of endocannabinoids and cannabinoids in both hypothalamus and submandibular gland during drug consumption and inflammation.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    STAT3-Ser/Hes3 signaling: a new molecular component of the neuroendocrine system?

    Get PDF
    The endocrine system involves communication among different tissues in distinct organs, including the pancreas and components of the Hypothalamic- Pituitary-Adrenal Axis. The molecular mechanisms underlying these complex interactions are a subject of intense study as they may hold clues for the progression and treatment of a variety of metabolic and degenerative diseases. A plethora of signaling pathways, activated by hormones and other endocrine factors have been implicated in this communication. Recent advances in the stem cell field introduce a new level of complexity: adult progenitor cells appear to utilize distinct signaling pathways than the more mature cells in the tissue they co-reside. It is therefore important to elucidate the signal transduction requirements of adult progenitor cells in addition to those of mature cells. Recent evidence suggests that a common non-canonical signaling pathway regulates adult progenitors in several different tissues, rendering it as a potentially valuable starting point to explore their biology. The STAT3- Ser/Hes3 Signaling Axis was first identified as a major regulator of neural stem cells and, subsequently, cancer stem cells. In the endocrine/neuroendocrine system, this pathway operates on several levels, regulating other types of plastic cells: (a) it regulates pancreatic islet cell function and insulin release; (b) insulin in turn activates the pathway in broadly distributed neural progenitors and possibly also hypothalamic tanycytes, cells with important roles in the control of the adrenal gland; (c) adrenal progenitors themselves operate this pathway. The STAT3-Ser/Hes3 Signaling Axis therefore deserves additional research in the context of endocrinology

    The effects of stress on brain and adrenal stem cells

    Get PDF
    The brain and adrenal are critical control centers that maintain body homeostasis under basal and stress conditions, and orchestrate the body’s response to stress. It is noteworthy that patients with stress-related disorders exhibit increased vulnerability to mental illness, even years after the stress experience, which is able to generate long-term changes in the brain's architecture and function. High levels of glucocorticoids produced by the adrenal cortex of the stressed subject reduce neurogenesis, which contributes to the development of depression. In support of the brain–adrenal connection in stress, many (but not all) depressed patients have alterations in the components of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis, with enlarged adrenal cortex and increased glucocorticoid levels. Other psychiatric disorders, such as post-traumatic stress disorder, bipolar disorder and depression, are also associated with abnormalities in hippocampal volume and hippocampal function. In addition, hippocampal lesions impair the regulation of the LHPA axis in stress response. Our knowledge of the functional connection between stress, brain function and adrenal has been further expanded by two recent, independent papers that elucidate the effects of stress on brain and adrenal stem cells, showing similarities in the way that the progenitor populations of these organs behave under stress, and shedding more light into the potential cellular and molecular mechanisms involved in the adaptation of tissues to stress

    The Kidneys and Aldosterone/Mineralocorticoid Receptor System in Salt-Sensitive Hypertension

    Get PDF
    Strong evidence supports the ability of the aldosterone/mineralocorticoid receptor (MR) system to dominate long-term blood pressure control. It is also increasingly recognized as an important mediator of cardiovascular and renal diseases, particularly in the presence of excessive salt intake. In a subgroup of individuals with metabolic syndrome, adipocyte-derived aldosterone-releasing factors cause inappropriate secretion of aldosterone in the adrenal glands during salt loading, resulting in the development of salt-induced hypertension and cardiac and renal damage. On the other hand, emerging data reveal that aldosterone is not a sole regulator of MR activity. We have identified the signaling crosstalk between MR and small GTPase Rac1 as a novel pathway to facilitate MR signaling. Such a local control system for MR can also be relevant to the pathogenesis of salt-sensitive hypertension, and future studies will clarify the detailed mechanism for the intricate regulation of the aldosterone/MR cascade

    Aldo Keto Reductase 1B7 and Prostaglandin F2α Are Regulators of Adrenal Endocrine Functions

    Get PDF
    Prostaglandin F2α (PGF2α), represses ovarian steroidogenesis and initiates parturition in mammals but its impact on adrenal gland is unknown. Prostaglandins biosynthesis depends on the sequential action of upstream cyclooxygenases (COX) and terminal synthases but no PGF2α synthases (PGFS) were functionally identified in mammalian cells. In vitro, the most efficient mammalian PGFS belong to aldo-keto reductase 1B (AKR1B) family. The adrenal gland is a major site of AKR1B expression in both human (AKR1B1) and mouse (AKR1B3, AKR1B7). Thus, we examined the PGF2α biosynthetic pathway and its functional impact on both cortical and medullary zones. Both compartments produced PGF2α but expressed different biosynthetic isozymes. In chromaffin cells, PGF2α secretion appeared constitutive and correlated to continuous expression of COX1 and AKR1B3. In steroidogenic cells, PGF2α secretion was stimulated by adrenocorticotropic hormone (ACTH) and correlated to ACTH-responsiveness of both COX2 and AKR1B7/B1. The pivotal role of AKR1B7 in ACTH-induced PGF2α release and functional coupling with COX2 was demonstrated using over- and down-expression in cell lines. PGF2α receptor was only detected in chromaffin cells, making medulla the primary target of PGF2α action. By comparing PGF2α-responsiveness of isolated cells and whole adrenal cultures, we demonstrated that PGF2α repressed glucocorticoid secretion by an indirect mechanism involving a decrease in catecholamine release which in turn decreased adrenal steroidogenesis. PGF2α may be regarded as a negative autocrine/paracrine regulator within a novel intra-adrenal feedback loop. The coordinated cell-specific regulation of COX2 and AKR1B7 ensures the generation of this stress-induced corticostatic signal

    Factors explaining variance in perceived pain in women with fibromyalgia

    Get PDF
    BACKGROUND: We hypothesized that a substantial proportion of the subjectively experienced variance in pain in fibromyalgia patients would be explained by psychological factors alone, but that a combined model, including neuroendocrine and autonomic factors, would give the most parsimonious explanation of variance in pain. METHODS: Psychometric assessment included McGill Pain Questionnaire, General Health Questionnaire, Hospital Anxiety and Depression Rating Scale, Eysenck personality Inventory, Neuroticism and Lie subscales, Toronto Alexithymia Scale, and Multidimensional Health Locus of Control Scale and was performed in 42 female patients with fibromyalgia and 48 female age matched random sample population controls. A subgroup of the original sample (22 fibromyalgia patients and 13 controls) underwent a pharmacological challenge test with buspirone to assess autonomic and adrenocortical reactivity to serotonergic challenge. RESULTS: Although fibromyalgia patients scored high on neuroticism, anxiety, depression and general distress, only a minor part of variance in pain was explained by psychological factors alone. High pain score was associated with high neuroticism, low baseline cortisol level and small drop in systolic blood pressure after buspirone challenge test. This model explained 41.5% of total pain in fibromyalgia patients. In population controls, psychological factors alone were significant predictors for variance in pain. CONCLUSION: Fibromyalgia patients may have reduced reactivity in the central sympathetic system or perturbations in the sympathetic-parasympathetic balance. This study shows that a biopsychosocial model, including psychological factors as well as factors related to perturbations of the autonomic nervous system and hypothalamic-pituitary-adrenal axis, is needed to explain perceived pain in fibromyalgia patients

    Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: New clues for understanding Chagas disease pathology

    Get PDF
    Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.Fil: González, Florencia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Villar, Silvina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Pacini, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Bottasso, Oscar Adelmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Perez, Ana Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; Argentin

    Liver-Specific Expression of Transcriptionally Active SREBP-1c Is Associated with Fatty Liver and Increased Visceral Fat Mass

    Get PDF
    The pathogenesis of fatty liver is not understood in detail, but lipid overflow as well as de novo lipogenesis (DNL) seem to be the key points of hepatocyte accumulation of lipids. One key transcription factor in DNL is sterol regulatory element-binding protein (SREBP)-1c. We generated mice with liver-specific over-expression of mature human SREBP-1c under control of the albumin promoter and a liver-specific enhancer (alb-SREBP-1c) to analyze systemic perturbations caused by this distinct alteration. SREBP-1c targets specific genes and causes key enzymes in DNL and lipid metabolism to be up-regulated. The alb-SREBP-1c mice developed hepatic lipid accumulation featuring a fatty liver by the age of 24 weeks under normocaloric nutrition. On a molecular level, clinical parameters and lipid-profiles varied according to the fatty liver phenotype. The desaturation index was increased compared to wild type mice. In liver, fatty acids (FA) were increased by 50% (p<0.01) and lipid composition was shifted to mono unsaturated FA, whereas lipid profile in adipose tissue or serum was not altered. Serum analyses revealed a ∼2-fold (p<0.01) increase in triglycerides and free fatty acids, and a ∼3-fold (p<0.01) increase in insulin levels, indicating insulin resistance; however, no significant cytokine profile alterations have been determined. Interestingly and unexpectedly, mice also developed adipositas with considerably increased visceral adipose tissue, although calorie intake was not different compared to control mice. In conclusion, the alb-SREBP-1c mouse model allowed the elucidation of the systemic impact of SREBP-1c as a central regulator of lipid metabolism in vivo and also demonstrated that the liver is a more active player in metabolic diseases such as visceral obesity and insulin resistance
    corecore